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Introduction

• Dynamic data integration in subsurface applications consists of integrating
large-scale data (e.g., production data) in order to reduce uncertainity and achieve
realistic sampling of subsurface properties.

• Production data (usually measured with some precision) describes an integrated
response (an average over the inter-well distance). Trying to obtain the
permeability (hydraulic conductivity) samples based on this integrated response is
an ill-posed problem.

• The problem reduces to sampling from a complicated distribition involving the
solutions of coupled nonlinear partial differential equations.

• Metropolis-Hasting Markov chain Monte Carlo (MCMC) methods can be used as
an umbrella sampling method. MCMC used in a straightforward way is very CPU
demanding.

• We propose and analyze approaches for efficient sampling which employ spatial
multi-scale models.
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Prototypical model

We consider two-phase flow in a reservoir under the assumption that the displacement
is dominated by viscous effects.

vj = −krj(S)

µj

k · ∇p, j = w, o

∇ · (λ(S)k∇p) = h,

∂S

∂t
+ v · ∇f(S) = 0, v = −λ(S)k∇p.

Measure coarse-scale data:

F (t) =

R

out
vf(S)dl

R

out
vdl

F(t)
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Illustration
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Problem setting

• Given the fractional flow information (coarse-scale data) F (t) and some precision,
we would like to sample k from P (k|F ).

• From Bayes theorem
P (k|F ) ∝ P (F |k)P (k).

• Here P (k) is the prior information, P (F |k) is the likelihood and assumed given by

P (F |k) = exp(− ‖Fk(t)−F obs(t)‖2

σ2

f

).

• Typical prior can be P (k) = exp(− ‖k−kobs‖
2

σ2

k

), where kobs is a coarse-scale

permeability. Thus, the posterior distribution is

P (k|F ) ∝ exp(−‖Fk(t) − F obs(t)‖2

σ2
f

) exp(−‖k − kobs‖2

σ2
k

).
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Difficulties

• π(k) = P (k|F ) can be multi-modal and high dimensional.

• π(k) = P (k|F ) is not given analytically and involves the solution of nonlinear pde
system.

P

k
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Metropolis-Hastings MCMC

Algorithm (Metropolis-Hastings MCMC)

• Step 1. At kn generate k from q(k|kn).

• Step 2. Accept k as a sample with probability

p(kn, k) = min

„

1,
q(kn|k)π(k)

q(k|kn)π(kn)

«

,

i.e. kn+1 = k with probability p(kn, k), and kn+1 = kn with probability 1 − p(kn, k).

Here π(k) is the distribution we would like to sample.

• Direct (full) MCMC simulations are usually prohibitively expensive, because each
proposal requires a fine-scale computation.

• We propose an algorithm, where the proposal distribution is modified using
coarse-scale spatial models.
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Coarse-scale spatial models

• An upscaled model is a representation of the fine-scale model on a coarse grid.

• In the single-phase upscaling procedures, the coarse-scale equations are of the
same form, except the media properties are upscaled (i.e., k is replaced by k∗).

• We employ multiscale finite element methods as a single-phase upscaling
technique. Multiscale methods, as traditional upscaling techniques, pre-compute
effective parameters (basis functions) that are repeatedly used for different
boundary condition, sources and mobilities.

• The pressure equation is upscaled using multiscale finite volume method and
coarse-scale velocity field is calculated and used for solving the saturation
equation. Basis functions are constructed only at time zero.

• This provides a very inexpensive approximation for the solution.

Coarse−grid Fine−grid
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Multiscale methods

Consider div(k(x)∇p) = f .

• Our goal is to solve this equation on a coarse grid of size h.

• Basis functions are constructed by solving the leading order homogeneous
equation in an element K (coarse grid or RVE)

div(k(x)∇φi) = 0 in K

• Boundary conditions are very important for accuracy of subgrid capturing error.
Choices: (1) local boundary conditions (the information only within the target
coarse block is taken into account); (2) oversampling (the information in slightly
larger than the target coarse block domain is taken into account).

• It is known that the local approaches suffer from the resonance errors expressed
as the ratio characterstic length scale/coarse mesh size. Limited global information
(important global information) can be used to remove the resonance errors.
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Basis functions
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Stochastic multiscale finite element methods

• Multiscale methods using limited global information rely on the assumption that the
solution smootly depends on some global fields in two-phase flow simulations

‖p − G(p1, ..., pN )‖H1 ≤ δ,

where δ is small. This holds for two-phase flows.

• One can construct multiscale (velocity) basis functions such that the obtained
mixed MsFEM converges with the rate C(δ + hα).

• In stochastic MsFEM, selected realizations are used to construct bassi functions.
Then, for any realization, the solution can be projected into this finite dimensional
space.

• Solve the pressure equation on the coarse-grid with fixed set of basis functions
and solve the saturation equation on the coarse-grid.

• Methods are not restricted to box grids and handle corner-point grids.
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Langevin Algorithms

An important type of proposal distribution can be derived from the Langevin diffusion.
The Langevin diffusion is defined by the stochastic differential equation

dk(τ) =
1

2
∇ log π(k(τ))dτ + dWτ ,

where Wτ is the standard Brownian motion vector with independent components. The
solutions of this stochastic differential equation are from π(k).
A discretization of the equation,

kn+1 = kn +
∆τ

2
∇ log π(kn) +

√
∆τǫn,

where ǫn are independent standard normal distributions.
The proposal is chosen to be

Y = kn +
∆τ

2
∇ log π(kn) +

√
∆τǫn,
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Langevin Algorithms

The transition distribution of the proposal is

q(Y |kn) ∝ exp

 

−
‖Y − kn − ∆τ

2
∇ log π(kn)‖2

2∆τ

!

,

q(kn|Y ) ∝ exp

 

−
‖kn − Y − ∆τ

2
∇ log π(Y )‖2

2∆τ

!

.

The reasons for using Langevin:

• Pde’s describing the physical model allow us to compute the gradients.

• The use of gradients is common in “stochastic” subsurface applications, e.g.,
Randomized Maximum Likelihood (RML). This approach samples the
measurement data and the prior information independently and then minimize the
posterior functional with these samples.

• The use of Langevin proposals usually yields higher mixing rates compared to
e.g., random walk sampler.
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Preconditioned coarse-gradient Langevin algorithm

The main idea: (1) use coarse-scale simulations to compute the gradient and make a
proposal; (2) run the coarse-scale simulation code and check the “appropriateness” of
the sample; (3) run the “fine-scale” simulation.

• Step 1. At kn, generate a trial proposal Y from the coarse Langevin distribution
q∗(Y |kn).

• Step 2. Take the proposal k as

k =

(

Y with probability g(kn, Y ),

kn with probability 1 − g(kn, Y ),

where

g(kn, Y ) = min

„

1,
q∗(kn|Y )π∗(Y )

q∗(Y |kn)π∗(kn)

«

.

• Step 3. Accept k as a sample with probability

ρ(kn, k) = min

„

1,
Q(kn|k)π(k)

Q(k|kn)π(kn)

«

,

where Q is the effective proposal distribution.
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Preconditioned coarse-gradient Langevin algorithm

• The transition distribution of the coarse-grid proposal is

q∗(Y |kn) ∝ exp

 

−
‖Y − kn − ∆τ

2
∇ log π∗(kn)‖2

2∆τ

!

,

q∗(kn|Y ) ∝ exp

 

−
‖kn − Y − ∆τ

2
∇ log π∗(Y )‖2

2∆τ

!

.
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Convergence of modified Markov Chain

Denote

E =
˘

k; π(k) > [0]
¯

,

E∗ =
˘

k; π∗(k) > [0]
¯

,

D =
˘

k; q(k|kn) > [0] for some kn ∈ E
¯

,

To sample from π(k) correctly, it is necessary that E ⊆ E∗. Otherwise, there will exist a
subset A ⊂ (E \ E∗) such that

π(A) =

Z

A

π(x)dx > 0 and π∗(A) =

Z

A

π∗(x)dx = 0.

As a result, the chain {kn} will never visit (sample from) A since the element of A will
never be accepted for fine-scale run in Step 2. For the same reason, we should require
that E ⊆ Ω.
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Numerical setting

• We consider log-normal permeability fields k(x) = exp(Y (x)), where Y (x) is
prescribed with a covariance matrix (e.g., normal or exponential).

• The permeability field is parameterized via Karhunen-Loève Expansion

Y (x, ω) =

∞
X

k=1

p

λkθk(ω)φk(x),

where E(θk) = 0, E(θiθj) = δij , λk and φk(x) are eigenvalues and eigenvectors
of covariance matrix.

• First step parameter reduction is performed by neglecting “small” eigenvalues.

• The permeability field can be conditioned at well locations.
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Numerical Results
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Left: Coarse-scale response surface π∗ restricted to a 2-D hyperplane. Right:
Fine-scale response surface π restricted to the same 2-D hyperplane.
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Numerical results
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Numerical results
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Numerical results
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Numerical Results

0.002 0.004 0.006

0.5

0.55

0.6

0.65

0.7

σ
c
2

A
c
c
e

p
ta

n
c
e

 P
e

rc
e

n
ta

g
e

 

 
precond coarse Langevin 11x11
interp precond coarse Langevin 11x11
fine scale Langevin

0.002 0.004 0.006
8

10

12

14

16

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

 

 
precond coarse Langevin 11x11
interp precond coarse Langevin 11x11
fine scale Langevin

Left: Acceptance rate comparison. Right: Natural log of CPU time (seconds)
comparison. In each plot δ = 0.05 and σ2

f
= 0.002.
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Numerical Results

0.003 0.006 0.009 0.012
4

5

6

σ
c
2

C
P

U
 T

im
e

 (
lo

g
 s

c
a

le
)

 

 

preconditioned coarse Langevin
coarse Langevin
fine scale Langevin

CPU times (seconds) for Langevin algorithms. σ2
f

= 0.003, δ = 0.05, 7 × 7 coarse-grid.

The use of coarse-scale models in uncertainty quantification – p.23/29



Numerical Results

0 20 40 60 80
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Accepted Trials

F
F

 e
rr

o
r

 

 
Interpolated
Fine Scale

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

PVI

F
F

 V
al

ue
s

FF Comparison

 

 
Exact FF
Sampled FF

Left: The fractional flow errors for the fine Langevin algorithm compared with
interpolated Langevin algorithm. Right: The fractional flows of sampled realizations and
the reference fractional flow. In these numerical tests, δ = 0.05 and σ2

f
= 0.002.
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Numerical Results

Upper left plot is the reference permeability. The other three plots are examples of
accepted permeability realizations.
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Numerical Results
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Left: Acceptance rate comparison. Right: Natural log of CPU time (seconds)
comparison. In each plot we use δ = 0.05 and σ2
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= 0.001.
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Numerical Results
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Numerical results

Upper left plot is the reference permeability. The other three plots are examples of
accepted permeability realizations.
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Conclusions

• Direct sampling using MH MCMC approaches is expensive

• Inexpensive coarse-scale models can be used to precondition Langevin MH
simulations.

• Coarse-scale simulations are based on multiscale finite element type methods.

• Multiscale basis functions can be constructed to represent an ensemble of
permeability fields.

• Numerical results demonstrate CPU time can be reduced by two orders of
magnitude.

• So far, we have used permeability priors which assume that the covariance
structure of the permeability is known. We plan to use discontinuous priors, e.g.,
BPM (Bayesian Partition Method), in future.
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